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Arguments for less supervision

● Expensive (time/money)
● Not always reliable or “correct”
● Not how humans learn

Two questions
● Can we predict multiple NL phenomena jointly and efficiently?

● Can we do it an a cognitively inspired unsupervised way?



Outline
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● Application-Driven ML: Extended SRL
○ Modular semantic structures
○ Inference over independently-trained models

● Cognitive ML: Baby SRL
○ Modeling early stages of language acquisition
○ Testbed for psycholinguistic theories and unsupervised ML

● Unifying the two: Unsupervised CCG induction
○ Structured lexical-syntactic-semantic representation 

● Future directions



Extended SRL (Joint work with Dan Roth)

● Semantic role labeling covers only specific predicate-argument relations

● Need for comprehensive semantic representations (SRL++)
○ Events, Entailment, Winograd schemas

● Difficult to produce hand-annotated resources (e.g. AMR, λ-calculus)
○ Especially for other languages/genres†

● Lots of independently annotated data for semantic tasks
○ Ontonotes, PDTB, Semeval/CoNLL/*SEM shared tasks
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†AMR annotation of The Little Prince
  http://amr.isi.edu/download/amr-bank-v1.6.txt 
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†AMR annotation of The Little Prince
  http://amr.isi.edu/download/amr-bank-v1.6.txt 

It was a picture of a boa constrictor in the act of swallowing an animal .

(p / picture
  :domain (i / it)
  :topic (b2 / boa
           :mod (c2 / constrictor)
           :ARG0-of (s / swallow-01
                      :ARG1 (a / animal))))

http://amr.isi.edu/download/amr-bank-v1.6.txt
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Inference with independent modelsModular semantic representation
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NER(phrase)::Cardinal → 

    Quant(phrase)::Number

NomSRL(arg)::ArgM-LOC → 

   ¬PrepSRL(prep)::Instrument



Constraint-driven inference
● Constrained Conditional Models [Chang et al., 2012] 

○ First-order constraints 
○ ILP inference

● Multi-view model combination [Burkett et al., 2010]
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Extended SRL: Systems
● Clauses
● *Comma SRL
● *Coreference resolution
● FrameNet
● Light-verb constructions
● Metonymy
● Multi-word expressions
● NER
● *Nominal SRL
● Phrasal-verb constructions
● PP attachment
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● *Preposition SRL
● Quantities
● Sentiment analysis (aspect-based)
● Sentence specificity
● Temporal extraction
● *Verb SRL
● VP ellipsis
● *Wikification

* denotes previously implemented system



Detour: CogComp software
● LBJava [Rizzolo & Roth, 2010]

○ Rapid development of ML software

● EDISON + TextAnnotation [Sammons et al., 2016]

○ Data structures and feature extraction
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NER system definition:

import edu.illinois.cs.cogcomp.esrl.core.features.*;
import edu.illinois.cs.cogcomp.core.datastructures.textannotation.Constituent;

discrete NERLabel(Constituent phrase) <- { return phrase.getLabel(); }

discrete NERClassifier(Constituent phrase) <-
   learn NERLabel
   using Capitalization, WordBigrams, POSBigrams, WordContextBigrams, 

POSContextBigrams, ChunkContextBigrams

   with SparseNetworkLearner {
       SparseAveragedPerceptron.Parameters p = 

new SparseAveragedPerceptron.Parameters();
       p.learningRate = .1;
       p.thickness = 2;
       baseLTU = new SparseAveragedPerceptron(p);
   }
end

● LBJava [Rizzolo & Roth, 2010]

○ Rapid development of ML software

● EDISON + TextAnnotation [Sammons et al., 2016]

○ Data structures and feature extraction
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● LBJava [Rizzolo & Roth, 2010]

○ Rapid development of ML software

● EDISON + TextAnnotation [Sammons et al., 2016]

○ Data structures and feature extraction

Output label

Classifier definition
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Extended SRL: Constraints

● [LVC(phrase)::true → ¬PVC(phrase)::true] ∧ 

[PVC(phrase)::true → phrase contains {IN|PRT|RB}]
○ LVC accuracy: 81.2 → 82.2 
○ Same PVC accuracy (89.9)
○ Candidate selection prevented constraint violation
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Extended SRL: Constraints

● [LVC(phrase)::true → ¬PVC(phrase)::true] ∧ 

[PVC(phrase)::true → phrase contains {IN|PRT|RB}]
○ LVC accuracy: 81.2 → 82.2 
○ Same PVC accuracy (89.9)
○ Candidate selection prevented constraint violation

● Quantities(phrase)::Date → Temporal(phrase)::Date
○ Quantities overall F1: 78.7 → 78.9 (Date acc: 79.2 → 85.5)
○ Temp overall F1: 75.7 → 75.9
○ Double implication doesn’t work

28



Extended SRL: Constraints

● NER(phrase)::Cardinal → Quant(phrase)::Number

● NER(phrase)::Date → Temp(phrase)::Date

● NER(phrase)::Date → Temp(phrase)::Date ∧ ¬Quant(phrase)::Number

● VerbSRL(arg)::ArgM-LOC → ¬PrepSRL(prep)::Instrument

● Metonymy(x)::true ∧ NER(x)::y → ∃z ∀x’ Met(x’)::false ∧ NER(x’)::z ∧ z≠y

29



Extended SRL: Summary
● Combination of multiple phenomena

○ No need for joint annotations

● Joint inference via first-order constraints
○ Offer linguistic insights

● Flexible interface
○ Only requirement is list of k-best predictions 
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But can we do it with less (direct) supervision?

● Other languages

● “Better-than-gold” performance [e.g. Spitkovsky et al., 2011]

One solution: Look into human language acquisition

● Cognitive insights for ML models

● Testbed for cognitive theories



A (simple) model of language acquisition

32

“The girl krads the boy”

“The boy krads”

krad = RUN ??
krad = CHASE ??



Baby SRL (Joint work with Cindy Fisher and Dan Roth)

● Syntactic bootstrapping
○ Using the structure of the utterances to predict the semantic

● An account of how syntactic bootstrapping can begin
○ Connor et al. (2010)
○ Fisher et al. (2010)
○ Gutman et al. (2014) 
○ van Schijndel & Elsner (2014)

● Framed as an SRL problem
○ Learn Agent/Patient roles for novel-verb utterances

33



Experiment 1: Supervised model

Given veridical feedback (“mind reading”), do low-level syntactic features 

capture anything useful about semantic roles/verb preferences?
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Experiment 1: Supervised model
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BabySRL corpus 
[Connor et al. 2008]

Online Percerptron
α=0.1, θ=4.0



Results on novel-verb sentences
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A krads B

Structure-Mapping hypothesis
[Fisher, 1996]



Results on novel-verb sentences
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A krads B A and B krad

Predicted error in 21mo
[Gertner & Fisher, 2006]



Experiment 1: Supervised model

Given veridical feedback (“mind reading”), do low-level syntactic features

capture anything useful about semantic roles/verb preferences?

38

YES, but verb knowledge is crucial



Experiment 2: Removing bottom-up supervision

Can we predict nouns/verbs using 

distributional clusters and a few seed nouns?

39



Experiment 2: Predicting nouns
● HMM (80 states) + Variational Inference

○ Trained on 2.2M tokens of CDS
○ List of function words to separate clusters

● List of seed nouns 
○ MacArthur-Bates CDI production norms [Dale & Fenson, 1996]

○ 75 nouns+pronouns (cutoff 50% at 21-mo)
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Noun identification:
state x contains > k seed nouns

where k = 4 [or dynamic]

http://wordbank.stanford.edu/


Step 1: Argument histograms
for each sentence:

count the number of nouns
collect histograms for each non-noun state 

Experiment 2: Predicting verbs
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Experiment 2: Predicting verbs
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Step 2: Aggregate verb predictions
store histogram-based predictions

for each sentence:
pick the HMM state most freq. appearing as verb



Results of verb/noun heuristics
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● Noun discovery is very accurate (84.3%)
○ ~30 nouns needed

● Verb accuracy is 6.6% > guessing (75.5%)
○ Using only argument counting

● Verb recall is low (~36%)
○ Multiple-verb sentences



Experiment 2: SRL predictions
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Experiment 2: SRL predictions
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Results on novel-verb sentences (transitive)
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lex < npat < vpos
vpos-rand << vpos (~30%)
lex better than gold-PoS



Experiment 3: Reducing top-down supervision
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Experiment 3: Reducing top-down supervision
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Results on novel-verb sentences (transitive)
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Results on novel-verb sentences (transitive)
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lex < npat ~ vpos
vpos-rand < vpos (~4%)



Baby SRL summary
● Modeling early language acquisition

○ Testbed for psycholinguistic theories
○ Replication of experimental results

● Structure-mapping for syntactic bootstrapping
○ Identifying verbs from noun structure
○ Predicting semantic roles using low-level syntactic features
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Getting closer to E-SRL

● Phrases instead of words
● Generalised predicate-argument structures
● Direct access to semantics



Bridging the gap: Inducing CCG structures
(Joint work with Yonatan Bisk and Julia Hockenmaier)

Combinatory Categorial Grammar [Steedman, 2000]

CCGbank [Hockenmaier & Steedman, 2007]
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Bridging the gap: Inducing CCG structures
(Joint work with Yonatan Bisk and Julia Hockenmaier)
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● Can we induce a CCG from raw text?
● Bisk & Hockenmaier (2013)

○ Inducing CCG from raw text + PoS
● Can we replace PoS with induced clusters?

○ Bisk, Christodoulopoulos, & Hockenmaier, 2015



Unsupervised CCG induction
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Unsupervised CCG induction
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Final round



Unsupervised CCG induction: Experiments
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Unsupervised CCG induction: Summary
● Structured syntactic categories

○ Predicate-Argument structure directly from categories

● Transparent to semantics 
○ Inverse of Kwiatkowski et al. (2012)
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Overall Summary
● Extended SRL

○ Modular semantic structures with joint inference
○ Improved performance over independently-trained models
○ Constraint-based theories of language processing [McDonald et al., 1994; Ferreira et al., 2002]

● Baby SRL
○ Identifying verbs using only a few seed nouns
○ Low-level syntactic features can guide semantic learning
○ Empirical evidence for structure-mapping account of syntactic bootstrapping

● Unsupervised CCG induction
○ Structured lexical-syntactic-semantic representation from raw text
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The road ahead
● Extended SRL

○ Mine for constraints
○ Entailment via latent structure alignment [Sammons et al., 2009]

● Baby SRL
○ Add internal structure (CCG)
○ More predicates, constructions (pro-drop, filler gap)

● Unsupervised CCG induction
○ Use weak semantic supervision
○ Add constraints from E-SRL
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Thank you!
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Dan Roth, Cindy Fisher, Mark Sammons, Vivek Srikumar, Parisa Kordjamshidi, 
Shyam Upadhyay, Daniel Khashabi, Stephen Mayhew, Mark Steedman, 

Yonatan Bisk, Julia Hockenmaier, Catriona Silvey

Source code:
https://gitlab-beta.engr.illinois.edu/cogcomp/illinois-esrl
https://gitlab-beta.engr.illinois.edu/babysrl-group/babysrl
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