Children's production of determiners: a test case for innate syntactic categories?

Catriona Silvey
Christos Christodoulopoulos

Evolutionary question

What do humans bring to the task of acquiring language?

 What can we learn from children's early spontaneous productions?

 Ongoing debate: children's production of determiner+noun combinations

What do humans bring to the task of acquiring language?

Valian (1986); Pine & Lieven (1997); Valian, Solt & Stewart (2009); Yang (2013); Pine et al. (2013)

What do humans bring to the task of acquiring language?

Valian (1986); Pine & Lieven (1997); Valian, Solt & Stewart (2009); Yang (2013); Pine et al. (2013)

of nouns used with both **the** and **a**# of nouns used with either **the** or **a**

```
do you know what those are ?
I guess she might like to see that .
I [7] Like [7] see that .
alright see that !
keep dat [: that] .
keep dat [: that] .
keep dat [: that] .
Boro .
hat hat .
what kind of hat is that ?
Adam hat .
Adam's hat 7
where have you seen a hat like that ?
Adam .
all_gone .
who (th)at ?
what (th)at (.) Doddy ?
who (th)at ?
what do you think this is ?
Mum(pty): Dum(pty) .
Humpty_Dumpty !
what is that ?
hit ball .
hit the [7] ball .
not the kind you hit but the kind you kick .
so what kind of ball is that ?
```

of nouns used with both **the** and **a**# of nouns used with either **the** or **a**

a baby
the baby

I guess she might like to see that.
I [7] like [7] see there
keep dat [1 that].
keep dat [1

of nouns used with both **the** and **a**# of nouns used with either **the** or **a**

a baby the baby

a cat

a cat

a cat

the ball the ball a ball

do you know what those are ? I guess she might like to see that . I [7] like [7] see that . alright see that ! keep dat [: that] . keep dat [: that] . keep dat [: that] . hat hat . what kind of hat is that ? Adam hat . Adam's hat 7 where have you seen a hat like that ? Adam . all_gone . who (th)at ? what (th)at (.) Daddy ? who (th)at ? what do you think this is ? Mum(pty)z_Dum(pty) . Mumpty_Dumpty ! what is that 7 hit ball . hit the [7] ball . not the kind you hit but the kind you kick . so what kind of ball is that ?

of nouns used with both the and a

of nouns used with either the or a

do you know what those are ? I guess she might like to see that . I [7] like [7] see that . alright see that ! keep dat [: that] . keep dat [: that] . keep dat [: that] . hat hat . what kind of hat is that ? Adam hat . Adam's hat 7 where have you seen a hat like that ? Adam . all_gone . who (th)at ? what (th)at (.) Doddy ? who (th)at ? what do you think this is ? Mum(pty)z_Dum(pty) . Mumpty_Dumpty ! what is that ? hit ball . hit the [7] ball . not the kind you hit but the kind you kick . so what kind of ball is that ?

a baby the baby

a cat

a cat

a cat

the ball the ball a ball 2/3 = **67%**

Pine & Lieven (1997)

Previous findings

- Pine et al. (1997, 2013)
 - child overlap initially lower than parent overlap
 - children gradually abstract syntactic categories

- Valian et al. (2009, 2014)
 - child overlap no different from parent overlap
 - children have innate syntactic categories

Yang (2013)

Yang (2013)

Yang (2013)

Overlap depends on noun frequency

a ball
the ball
the ball
a ball
a ball
the ball
the ball
the ball

Determiners & nouns should freely combine within frequency constraints

Yang (2013)'s model

- Predicts overlap from 3 main parameters:
 - Zipfian probability of each noun
 - Zipfian probability of each determiner
 - Sample size (number of det+noun pairs)

 Predicted & empirical overlap values for 6 children (1;1-5;1) from CHILDES

Yang (2013) results

Child data: replication

Free combinations

Data

a baby

a cat

a cat

a cat

the ball

the ball

ball

Free combinations

Data baby a baby the cat a cat a cat the ball Frequencies ball the ball а a 5 the baby 3 cat

ball

3

Free combinations

Child data: free combinations

Child data: implications

Model underestimates overlap under freely combinatorial rule

This holds for simulated Zipfian samples

Why does the model fit the real data?

Real data do not combine freely

a cookie a cookie a cookie a cookie

the door

Lana Dandan (Flickr)

Frederik Ranninger (Flickr)

Should a generativist theory predict free combinations?

 Children don't freely combine determiners and nouns

And they shouldn't!

 Regularities in discourse context constrain combinations beyond marginal frequencies

Should a constructivist theory predict early constrained combinations?

 Children produce nouns alone before det +noun combinations (Clark, 2003)

 Evidence from input that 'the' and 'a' can combine with many nouns

By the time children produce combinations,
 ample evidence from which to construct a rule

Other approaches

 Bayesian modelling (Meylan, Frank & Levy, 2013)

Denser sampling e.g. Human Speechome
 Project (Roy et al., 2006)

Experimental studies (Maratsos, 1974;
 Warden, 1976; Karmiloff-Smith, 1979)

More broadly

Taking a broader perspective

- Determiners + nouns
 - Historical change
 - Invention without input

On the cultural level

Rules change during transmission and interaction

Greenberg (1978); Beckner & Bybee (2009); De Mulder & Carlier (2012); Smith, Fehér & Ritt (2014)

On the individual level

A learner with no input still generates rules

[PENNY point at penny] point at self

[penny that] me

-

David, homesigner

'(You) (give) me that penny.'

Only after abstract noun category appears

Back to our original question

- What do humans bring to the task of acquiring language?
 - Propensity to infer (or create) combinatorial rules
 - Rules emerge via individual & historical reanalysis
- What can we learn from children's early spontaneous productions?
 - Different theories may not make different predictions
 - Combinations will be semantically constrained

Thanks!

Thanks to Charles Yang for his assistance with our replication.

Funding: NIH P01HD40605, R01-HD054448

Code available at:

https://github.com/christos-c/noun-det-diversity

References

Goldin-Meadow, S. (2003). The resilience of language. New York: Psychology Press.

Hunsicker, D., & Goldin-Meadow, S. (2012). Hierarchical structure in a self-created communication system: Building nominal constituents in homesign. *Language*, 88(4), 732–763.

Pine, J. M., & Lieven, E. V. M. (1997). Slot and frame patterns and the development of the determiner category. *Applied Psycholinguistics*, 18(02), 123.

Pine, J. M., Freudenthal, D., Krajewski, G., & Gobet, F. (2013). Do young children have adult-like syntactic categories? Zipf's law and the case of the determiner. *Cognition*, *127*(3), 345–360.

Valian, V. (1986). Syntactic categories in the speech of young children. *Developmental Psychology*, 22, 562-579.

Valian, V., Solt, S., & Stewart, J. (2009). Abstract categories or limited-scope formulae? The case of children's determiners. *Journal of Child Language*, *36*(4), 743–778.

Yang, C. (2013). Ontogeny and phylogeny of language. *Proceedings of the National Academy of Sciences of the United States of America*, 110(16), 6324–7e.

References (continued)

Greenberg, J. H. (1987). How does a language acquire gender markers? In Joseph H. Greenberg, Charles A. Ferguson, and Edith A. Moravcsik (eds), *Universals of Human Language*, vol. 3: *Word Structure*. Stanford, CA: Stanford University Press, 47–82. Clark, E. V. (2003). *First language acquisition*. Cambridge: Cambridge University Press. De Mulder, W., & Carlier, A. (2012). The grammaticalization of definite articles. In B.

Heine & H. Narrog (Eds.), *The Oxford Handbook of Grammaticalization* (pp. 522–534).

Oxford: Oxford University Press.

MacWhinney, B. (2000). The CHILDES Project. Mahwah, NJ: Lawrence Erlbaum.

Smith, K., Fehér, O., & Ritt, N. (2014). Eliminating unpredictable linguistic variation through interaction. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), *Proceedings of the 36th Annual Conference of the Cognitive Science Society* (pp. 1461–1466). Austin, TX: Cognitive Science Society.

Pictures: Lana Dandan https://www.flickr.com/photos/lanadandan/346204320/ and Frederik Ranninger https://www.flickr.com/photos/130218015@N02/16461029851/

Yang (2013) model

Probability noun not sampled

Probability noun sampled exclusively with one determiner

Simplified model

Probability noun sampled exclusively with one determiner

Brown (1973)

- World knowledge
- Knowledge of what others know
- Understanding of connected discourse
- Part-whole entailment
- Fictitious/ hypothetical reference

Brown (1973)

SARAH: I want to open the door.

MOTHER: what door?

GLORIA: he's going on the fox's tail.

• •

EVE: he on a fox's nose.

Free combination is not the goal

go to the kitchen and get me a cookie.

I'm going to have a bath.

answer the phone!

Free combination is not the goal

go to a kitchen and get me the cookie.

I'm going to have the bath.

answer a phone!

Nim

2-sign combinations

MORE Nim MORE Nim

GIVE drink
GIVE drink
MORE drink
GIVE drink
MORE drink

Nim: replication

Nim: free combinations

Nim: implications

Model overestimates overlap under freely combinatorial rule

 Nim's sample not strictly Zipfian – low-ranked signs less frequent than predicted

 Nim data and child data not comparable using this model

Children

Peter 1;9.08 - 3;1.20

Adam 2;3.04 - 5;2.12

Sarah 2;3.05 - 5;1.06

Eve 1;6 - 2;3

Naomi 1;2.29 - 4;9.03

Nina 1;11.16 - 3;3.21