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This paper:
Labeled dependencies without POS tags

CCG Induction (Bisk & Hockenmaier 2013; 2015):
Labeled Dependencies from POS tags

Dependency Grammar Induction:
Unlabeled Dependencies from POS tags
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Most approaches to grammar induction are based on the assumption that gold POS tags are available to the induction system.
POS tags are arbitrary, relatively clean, clusters, which we replace with induced clusters.

1 . Induce and Lab9| CIUSters: Noun, Vel‘b, Other M Noun Recall & Verb Recall Other Recall

Data:

shares, sales, business,
companies; prices; investors,
them, people, bonds, stocks,
earnings, officials, income,

rates, markets,

analysis,
products, funds, operations,
growth, banks, issues, costs,
concern, traders, him, assets,

loans, firms, results, here, ...

C29

the, its, their, his, these, our,
Robert, my, your, every, His,
Hurricane, Sir, Their, Freddie,
Dean, Du, Tom, Jim, Remic,
Roger, Gary, Ronald, Kenneth,
Alex, Bruce, Litigation, Jay,
Alfred, Ad, CS, Andrew,
Patrick,

negotiable, Thrift,
Allied, Speaker, ...

Cis

’s, is, was, are, has, were,
had, rose, fell, ~‘re;- ended,
expects, whose, ‘ve, remains,
gained, owns, includes,
became, jumped, holds, takes,
provides, climbed, grew, gets,
operates, sells, tumbled,
seeks, becomes, begins,

e CCGbanks: English and Chinese
e Dependency Corpora:
10 PASCAL Challenge Languages

Metric:

eased, allowed, helps, ..

Cas

Recall from majority vote cluster labeling
from 3 annotated words per cluster.

PASCAL

English Chinese

We use the Bayesian Mixture of Multinomials model (BMMM) of Christodoulopoulos et al. 2011 to induce word clusters. BMMM performs a type-based clustering
based on token-level features and automatically inferred morphology [Morfessor (Creutz & Lagus 2006)]. Based on the Universal POS tags of the three most
common words, clusters are labeled as N(oun), V(erb) or O(ther).

2. Induce a Grammar and Learn Labeled Dependencies
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(S\S)\(S\N) The parser returns CCG derivations and hence labeled dependencies.

3. Parsing Evaluation

Bisk & Hockenmaier 2015 produce labeled dependencies with an unsupervised CCG system based on gold POS tags. We show that performance degrades only
slightly (less than 1/3 on average) with induced word clusters.
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Analysis & Future Work

Every language poses its own challenges. In panel 2 we see that identifying verbs proves difficult in Chinese. Additionally, in panel 4 we find the largest gaps in
languages with rich morphology. Better clustering or feedback from the syntax may help address these issues.
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