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• Demand: A general solution for easily constructing such networks or systematically 
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• Demand: Relational data representation, learning and flexible intelligent data 
analysis, as well as the evolution of these networks based on the analysis outcomes, 
need to be placed in a well-defined framework. 
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•A language for specifying the schema of a graph —a relational datamodel.
• Interaction with messy, naturally occurring data using domain sensors.
• Integrating data from heterogeneous resources in one unified graph.
•Graph traversal queries operating on the datamodel.  
•Seamless integration of  learning and inference algorithms to manipulate the data.
•The query language, in addition to basic retrieval operations, helps in,

•Preparing learning examples
•Feature extraction 
•Performing meta analysis on the graph

•Evolving the graph based on the  outcomes of learning and inference 
•Considering expert knowledge at a very high level with a logical representation.
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