Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks

Parisa Kordjamshidi, Tulane University; Florida Institute of Human and Machine Cognition
pkordjam@tulane.edu
Sameer Singh, University of California, Irvine
Daniel Khashabi, University of Illinois at Urbana-Champaign
Christos Christodoulopoulos, Amazon Research Cambridge, UK
Mark Summons, University of Illinois at Urbana-Champaign
Saurabh Sinha, University of Illinois at Urbana-Champaign
Dan Roth, University of Illinois at Urbana-Champaign

Statistical Relational AI
August 2017, Sydney, Australia
Motivation
Motivation

- **Real-world systems**: many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.
Motivation

• **Real-world systems**: many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.

• **Examples**: are Biological Networks, Social Networks or general Knowledge Graphs with arbitrary complex structures.
Motivation

- **Real-world systems**: many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.
- **Examples**: are Biological Networks, Social Networks or general Knowledge Graphs with arbitrary complex structures.
Motivation

• **Real-world systems:** many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.

• **Examples:** are Biological Networks, Social Networks or general Knowledge Graphs with arbitrary complex structures.

• **Existing research:** addresses many challenges of working with such networks for various mining tasks. Mostly specialized approaches perform specific types of analysis over a network design with **task specific implementations**.
Motivation

• **Real-world systems:** many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.

• **Examples:** are Biological Networks, Social Networks or general Knowledge Graphs with arbitrary complex structures.

• **Existing research:** addresses many challenges of working with such networks for various mining tasks. Mostly specialized approaches perform specific types of analysis over a network design with **task specific implementations**.

• **Demand:** A general solution for **easily constructing** such networks or **systematically manipulating** them by **various analysis units** based on learning and reasoning.
Motivation

- **Real-world systems:** many of them use *heterogeneous information networks* that consist of numerous interacting components of different types.
- **Examples:** are Biological Networks, Social Networks or general Knowledge Graphs with arbitrary complex structures.
- **Existing research:** addresses many challenges of working with such networks for various mining tasks. Mostly specialized approaches perform specific types of analysis over a network design with **task specific implementations**.

- **Demand:** A general solution for easily constructing such networks or systematically manipulating them by various analysis units based on learning and reasoning.
- **Demand:** Relational data representation, learning and flexible intelligent data analysis, as well as the **evolution** of these networks based on the analysis outcomes, need to be placed in a well-defined framework.
Placing the Required Components in Saul
Saul is a declarative Learning based programming language that targets **designing relational learning models**.
Saul is a declarative Learning based programming language that targets designing relational learning models.

• A language for specifying the schema of a graph —a relational datamodel.
Saul is a declarative Learning based programming language that targets **designing relational learning models**.

- A language for specifying the schema of a graph — a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
Saul is a declarative Learning based programming language that targets **designing relational learning models.**

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
Saul is a declarative Learning based programming language that targets **designing relational learning models**.

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
Saul is a declarative Learning based programming language that targets designing relational learning models.

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
Saul is a declarative Learning based programming language that targets **designing relational learning models**.

- A language for specifying the schema of a graph — a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
- The query language, in addition to basic retrieval operations, helps in,
Saul is a declarative Learning based programming language that targets **designing relational learning models**.

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
- The query language, in addition to basic retrieval operations, helps in,
 - Preparing learning examples
Placing the Required Components in Saul

Saul is a declarative Learning based programming language that targets **designing relational learning models.**

• A language for specifying the schema of a graph —a relational *datamodel*.
• Interaction with messy, naturally occurring data using domain sensors.
• Integrating data from heterogeneous resources in one unified graph.
• Graph traversal queries operating on the *datamodel*.
• Seamless integration of learning and inference algorithms to manipulate the data.
• The query language, in addition to basic retrieval operations, helps in,
 • Preparing learning examples
 • Feature extraction
Saul is a declarative Learning based programming language that targets **designing relational learning models.**

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
- The query language, in addition to basic retrieval operations, helps in,
 - Preparing learning examples
 - Feature extraction
 - Performing meta analysis on the graph
Saul is a declarative Learning based programming language that targets **designing relational learning models**.

- A language for specifying the schema of a graph — a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
- The query language, in addition to basic retrieval operations, helps in,
 - Preparing learning examples
 - Feature extraction
 - Performing meta analysis on the graph
- Evolving the graph based on the outcomes of learning and inference
Saul is a declarative Learning based programming language that targets **designing relational learning models.**

- A language for specifying the schema of a graph —a relational *datamodel*.
- Interaction with messy, naturally occurring data using domain sensors.
- Integrating data from heterogeneous resources in one unified graph.
- Graph traversal queries operating on the *datamodel*.
- Seamless integration of learning and inference algorithms to manipulate the data.
- The query language, in addition to basic retrieval operations, helps in,
 - Preparing learning examples
 - Feature extraction
 - Performing meta analysis on the graph
- Evolving the graph based on the outcomes of learning and inference
- Considering expert knowledge at a very high level with a logical representation.
Overview of the components
Overview of the components

- Examples?
Overview of the components

- Examples?

Come to the poster!