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PoS           Dependencies

PoS           Dependencies·  Traditional view:

o Directly, instead of words (Klein and Manning, 2004)

o Back-off mechanism (Headden et al., 2009)

·  A better approach:

o Evidence from supervised systems (Cohen et al., 2011 inter alia)

o Taggers (in most cases) rely on local contextual features

o Parsers use richer hierarchical features than taggers

· Our developmental experiments on WSJ show that 

dependencies can be useful for unsupervised PoS 

induction

DMV (Klein and Manning, 2004)

·  Dependencies generated based on 3 decisions

   (3 probability distributions)

o PORDER Direction of children attachment (left or right)

o PSTOP Stop attaching more children (true or false)

o PATTACH Attach a specific child node

·  Simple, easy to train with Inside-Outside

·  Basis for most unsup. dependency parsing systems

·  Psentence = Σ P(DROOT) for all derivations headed by ROOT

·  Observed variables are:

o Token-level features 

   (e.g. left-right context, f 1...T)

o Type-level features 

   (morphology, m)

·  Mixture of multinomials

o    for the word classes

o      for each feature

o Dirichlet priors (   and  

respectively)
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·  Collapsed Gibbs sampling for inference

·  Can be used with unsupervised PoS tags as input Using dependencies as features (gen. 1 and above)

o Assuming DMV parsed corpus (with PoS tags from gen. 0)

o Features are # times word1

   heads word2

o Group by PoS tag 

   (to reduce sparsity)

o Use undir. dependencies 

   (adding the reverse counts) – 

   see right panel1 2 3 4
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a 2

likes 2 1

man 2 2

Mary 1

walks 1 1

o Some improvement in many-to-1 after 1 generation

o Other metrics no improvement

(a) Using only directed dependencies:

After the first 5 generations:

o 8.5% increase in M-1

o 1.3% increase in VM

for the PoS inducer

o 7% increase in directed dep. accuracy

o 3.8% increase in undirected dep. Accuracy

for the parser 

(b) Using directed and undirected dependencies:

Experimental setup

·  5 generations of the combined system

·  For the DMV

o 500 sampling iterations

o dir. + undir. dependencies 

o ±1 context words (100 most frequent)

o suffixes extracted from Morfessor (Creutz and Lagus, 2005)

o extended morphology features (Haghighi and Klein, 2006)

·  For the BMMM:

o 20 training iterations

o “Harmonic initializer” with parameters:

PORDER = 0.5, PSTOP=T = 0.25, PSTOP=F = 0.75

PATTACH(α|h,·) = 1/(1+dist(α,h))
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·  Developmental results on WSJ10
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