
  

Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks

Motivation    Code Excerpts-two case studiesData Modeling

◆ Populated data graph

Knowledge Representation

◆Datamodel graph example of biology domain
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(b)

words().filter(x=>pos-tag(x).equals(“NN”)) 
val joinNode = join(node1,node2)(/*body*/) 
mynode(x).neighborAt(n) 
mynode(x).neighborWithin(n) 
mynode(x).path(y) 
def feature = using(query1, query2, …)

val WorkFor=constraintOf[Pairs] { 
x:Pairs => { 
((WorkFor on x) is true) ==> 
((PER on x.firstArg) is true) and  
((WorkFor on x) is true) ==> 
((ORG on x.secondArg) is true) } }

val SingleEntityLabel=constraintOf[Phrase]{ 
x:Phrase=>{ 
((PER on x) is true)==>((ORG on x) is false) 
and 
((ORG on x) is true)==>((PER on x) is false)}}

object WorkForCCM extends ConstraintClassifier[Pairs]
{def subjectTo= WorkFor}

val GeneFeatures = property(Gene)  
{x=>{ KEGG(x)::motif_(x)::GoFeatures(x):: 
KEGG(x.windo(1))::Nil}}

Object WorkForPipe extends Learnable[Pair]{ 
def label = retype is "Work-For" 
def features=RelationFeatures}

object WorkForJoint extends ConstraintLearner 
[Pairs]{def subjectTo= WorkFor }

◆ Basic operations (c1)

◆ Relational Feature Declaration (c3)

◆ Pipeline Model- ER (c4)

◆ IBT Model (c8) -ER

◆Constraint Declaration (c5)- ER

◆ L+I model (c7)  -ER

◆ Constraint Declaration (c6) -ER

object CancerClassifierG extends Learnable[Phrase] { 
def label = cancerType 
def features=TissueFeatures}

◆ Local Learner Declaration (c2)
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Learning and Inference
◆Local Models  
Defining classical learning models which do classification is 
one line of code given the feature declaration language. See 
example codes C2 and C4.  

◆Global Models 
The structure of the dependencies in the global models  is 
shown using an extended notion of factor graphs. Each local 
learner represents a factor in the graph and each constraint is 
constraint factor relating factors to each other. In factor graph 
b,  the factor 5 corresponds to the constraint c5 and factor 4 
corresponds to constraint c6. We can indicate that the global 
constraints are used only during prediction time (L+I model) as 
in code c7 or we can make use of the global constraints during 
training and train jointly (IBT) as in code c8.  

◆Pipeline Models 
A pipeline model uses the prediction of other classifiers as 
features. 

A datamodel graph is 
defined and populated, 
yielding a data graph. 
We provide a language 
f o r spec i fy ing the 
schema of a typed 
graph; and interaction 
with messy, naturally 
occurring data using 
R e a d e r s , D o m a i n 
B a s e T y p e s a n d 
Domain Sensors.

  

Relational Feature Engineering
The data graph is used as a global structure via which various 
local or contextual features can be extracted. See (c1 and c3) 
codes, in c3, a set of propeerties are defined for a node of 
type Gene in the model graph. These features include a 
number of local properties of a gene such as the KEGG 
pathway of it, in addition to some contextual properties such 
as the KEGG features of the genes in a window with length 
one which are connected to that gene in the data graph.

To represent higher level information about the problem that 
are hard to represent in a graph, we use a  first order like 
language using the logical operators and quantifiers to 
represent how various variables interact with each other. 
These are first order constraints, see examples in C5 and 
C6 codes.  A query can ask for the prediction of an unknown 
variable that satisfies the global constraints.
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Graph Queries
‣Graph Querying from heterogeneous resources in one 
unified  datamodel:   
‣Basic Relational Algebraic Operations  
‣ Filtering, Projecting, Explicit Joins (see c1) 

‣Graph Matching Queries 
‣Path, Neighborhood, Window (see c1) 

‣Queries for learning and inference 
‣Preparing learning examples 
‣Feature extraction (c3) 
‣Querying over the outcome of learning and 
inference under global constraints expressed 
with logical expressions. 

•Evolving the graph based on the  outcomes of learning 
and inference.  

•Performing meta analysis on the graph

a) The FG of a pipeline model.
b) The FG of a joint model in which the labels are related with constraint factors.
c) The FG of a basic classifier. 
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Many real-world systems use heterogeneous information 
networks that consist of numerous interacting components of 
different types. Examples are Biological Networks, Social 
Networks or general Knowledge Graphs with arbitrary complex 
structures. Previous research extensively addresses the 
challenges of working with such networks for various mining 
tasks. However, a general solution for easily constructing such 
networks or systematically manipulating them by various 
analysis units has not yet been worked out. Mostly specialized 
approaches perform specific types of analysis over a network 
design with task specific implementations. Relational data 
representation, learning and flexible intelligent data analysis, as 
well as the evolution of these networks based on the analysis 
outcomes, need to be placed in a well-defined framework. 

val sentences = node[Sentence] 
val phrases = node[Phrase] 
val contains_s_ph = edge(sentences,phrases) 
val surface = property(phrases) { 
  x => surface_sensor(x) } 
contains_s_ph.addSensor(chunker) 
sentences(x) ~> contains_s_ph ~> prop surface

◆ Graph Declaration and queries, NLP

  

Saul Language Components

◆Data Modeling 
◆Relational Feature Engineering 
◆Knowledge Representation 
◆Designing Learning and Inference Paradigms

Saul is a declarative Learning based programming language 
that targets designing relation learning models that 
consider global dependencies and domain knowledge in 
learning and inference. 

 val patients = node[Patient]
 val genes = node[Gene]
 val patientGene = node[PatientGene]
 val patientDrug = node[PatientDrug]
 val geneGene = node[GeneGene]
 val geneGenes = edge(geneGene, 
genes)
 val drugResponse = 
property(patientDrug) {x: PatientDrug => 
x.response }
…

KnowEngDataModel.populate(inputCollections)

(c)


