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Abstract—This paper investigates the problem of target lo-
calizing by a communicating robotic swarm in an unknown
environment. Robots have to collaboratively search for the target
while avoiding obstacles in their way. Emphasis is given on how
physical constraints such as obstacles and communication links
affect the swarm’s operation. Finally, simulation results of the
proposed system in a small scale area are presented and evaluated
and possible uses of the system are discussed.

I. INTRODUCTION

In this paper we discuss the subject of source localization
with the use of a wireless robotic network. A wireless robotic
network is a swarm of mobile sensors that communicate to
exchange information about their state in order to make a
collective decision. Our objective is for the robotic sensors
(from now on called agents) to decide on how to locate and
converge to a source. A source can be anything which creates
a field that can be measured with wireless sensors.
Similar work on the field includes simulations with various
techniques to process the exchanged data such as methodolo-
gies on Kalman filters [1], graph searching algorithms [2] and
variations of swarm optimization algorithms [3] [4].
However none of these approaches considers real life con-
straints that would apply to such an application. In real life
application the agents would have to avoid physical obstacles
that may lie in their way and still operate effectively while
searching for the source. Moreover these obstacles may be
blocking communication between the agents of the swarm,
thus affecting its collaborative ability.
In this paper we will examine how such constraints affect the
robot swarm in its goal to locate and converge to a source. In
our application collective decision-making is achieved through
the Particle Swarm Optimization algorithm (PSO). This al-
gorithm is used to adjust the movement of every agent by
processing data from all the agents of the network including
itself.
The required data is transmitted via a wireless sensor network.
Wireless Sensor Networks is an established technology, used
mainly to collect and process field data. It consists of sensors
which collect environmental variables and have communica-
tions infrastructure that enables them to transmit their readings
to one another. The usual purpose of the network is to route
all data to a data sink which will then process the data.
As mentioned above, an agent moving towards the source

may find an obstacle blocking its way. Every robotic agent
is equipped with sensors that allow it to scan the path of the
motion. When an obstacle is sensed the agent executes an
obstacle-avoidance sub-routine. Once the obstacle has been
surpassed, the agent continues to move towards its initial
destination (i.e. the source).
The above described system has been simulated in Java
environment and our initial results are presented. A number
of real-life problems can be addressed by implementing our
system. These include military targets and natural emissions
(i.e. heat, radiation etc.) localization, among others and will
be described further on.

II. PARTICLE SWARM OPTIMIZATION ALGORITHM

The Particle Swarm Optimization (PSO) algorithm is part
of the Swarm Intelligence algorithms family which is a form
of Collective Intelligence [5]. It was initially proposed by
Kennedy as a method of social behavior simulation and was
established as an optimization algorithm in 1995 [6].
The idea of the method is that a swarm of agents tries to
find the optimum value in a searching space by measuring the
values of the agents’ positions. For our application we will
use a version of the algorithm known as PSO Type 1’ [7].
Its differentiation from the classic algorithm is the addition
of some coefficients (described later on) that help the swarm
converge to a solution more efficiently.
The algorithm operates as follows: Every individual agent has
a position vector (~x) and an adaptive velocity vector (~u) in
the search space. Furthermore, each agent has memory of
the position of its best measurement (~pi) so far and acquires
the position of the best measurement (~pg) made throughout
the swarm. The agent’s movement is an acceleration vector
with a direction that derives from the combination of its
personal best position along with the swarm’s best position.
The acceleration’s norm derives from the combination of the
agent’s current velocity vector in conjunction with the vector
calculated by the algorithm.
Random factors φ1, φ2 ∈ [0, φmax] are used to add some
fuzziness to the acceleration vector, thus serving for better
searching of the space. The final equation is:
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where n is the current algorithm step and χ is a positive
number called global constriction coefficient that makes the
system to be non divergent and is represent by:
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where κ ∈ [0, 1] with smaller values resulting in faster
convergence and φ = φ1 + φ2.
The efficiency of the PSO algorithm has been tested thor-
oughly by optimization theorists using standard optimization
test functions such as Rosenbrock, Griewangk and Rastri-
gin [7].
We performed further ’test runs’ in Matlab using the
|sin(x)/x| function. The PSO’s efficiency in the |sin(x)/x|
function was over 95% when used with more than 8 agents,
whereas with more than 10 agents the efficiency rose up to
99%.

III. COMMUNICATION NETWORK

As described above, the swarm needs to exchange informa-
tion between all its individual agents, for the searching algo-
rithm to execute. To achieve that, a wireless communication
network needs to be established.
The structure of the network is time variant and unstable,
because the agents will constantly move and may become
unreachable at some point. They operate in an environment
with high uncertainty and have very little information about
their surrounding space. Therefore the communication network
has to be a decentralized, ad-hoc network.
For our application we propose the use of sensors which are
used in wireless sensor networks and are capable of measuring
and transmitting data. Wireless sensor networks use various
techniques to establish an appropriate topology to route data
through the network, usually with the purpose of collecting
this data to a base station for further processing. In our case,
we don’t need a centralized data collection, but for every
single agent to individually collect all the data transmitted.
Furthermore we cannot create routing tables, since the agents
constantly move in unequal distances and there isn’t any static
point of reference. Therefore we use the typical setup of wire-
less sensor networks and utilize agents with omnidirectional
antennas broadcasting their data to every other agent in the
network using time division multiple access (TDMA).
The nature of the application is tolerable to communication
links being broken for a couple of the PSO algorithm’s
steps. Every agent uses as much information as it can gather
from the rest of the swarm in order to make its decision
about its movement. An agent may for some reason become
permanently disconnected to the network, thus leaving the
swarm; this however will have no effect on the rest of the
network that will keep operating normally, broadcasting their
data. Information gathered from fewer agents though, will
result in poorer decision making by the PSO algorithm, but
this has minor overall impact, as it has been observed during
the simulation.

IV. ROBOTICS

Every agent of the swarm consists of a robotic part which
enables it to perform both the motion and the obstacle avoid-
ance functions. The robots that implement the swarm system
can be of any type, as long as they provide the sensors with
the above mentioned capabilities. In our application, we use
a basic wheeled robot equipped with ultrasonic sensors. For
the time being our research is limited to surface robots, even
though the same algorithmic principles can be extended to
aerial or aquatic robots.
One fundamental task of the robotic section is self localization.
In order for the PSO algorithm to operate the agents must
know both their positions in space (2D points, for simplicity
reasons) and the position of every other agent. One commonly
used method, for this problem is GPS navigation but given
the fact that in our application the agents operate in an
indoor environment, this method is inappropriate. Another
solution involves guiding beacons (using reflectors and laser
rangefinders or RF technologies), which are pre-set in the
area. In our application, however the agents must operate in
unknown areas, so it is not possible for beacons to exist in the
environment. The solution that we propose is the establishment
of a distributed global coordination system. During an initial-
ization phase all agents start from the same point in the area
and they start to move towards a randomly selected position.
As every agent moves, they know their absolute position (in
relevance with the starting point) and their relative position to
the other agents (provided they can communicate).
Another issue that arises when dealing with robotics is motion,
in the sense of the equations that describe the direction and
the position of the robot (reverse kinematics).
Due to the complex nature of reverse kinematics we use a
simplified set of motion equations that describe the motion
as a combination of straight motion and non-moving rotation
around the vertical axis [8].
Another aspect of the robotic motion is speed. Or, to be more
exact, the time needed to perform one step of the algorithm. In
the standard PSO algorithm there is no limit for each agent’s
speed (beside the global constriction coefficient). However, in
a real world application we have to work with agents that
might be somehow restricted concerning their speed. For this
reason we insert a timeout limit in the main algorithm. This
limit forces the agents to perform each step of the algorithm
within a certain time frame. When the timeout occurs, the
current algorithm step stops and the next one begins. The speed
of each agent is determined accordingly. After calculating the
new position, the agent adjusts its speed in order to reach the
position within the given time frame.
One final issue that needs to be addressed is obstacle avoid-
ance. By obstacle we define any static object of a certain size
(larger than ∼ 60cm., e.g. walls, large furniture). In our appli-
cation the obstacle detection system consists of three ultrasonic
sensors placed at 90◦ intervals. The obstacle avoidance routine
is divided into two sub-routines: ”obstacle detection” and
”obstacle avoidance”. During the detection subroutine the
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Fig. 1: Simulation in indoor environment with 5 agents. The
source is located in the middle of the space. Pictures (a)
to (d) depict the time progression at steps 1, 5, 10 and 15
respectively.

ultrasonic sensor scans the area in front of the robot. After
each scan the sensors return a distance measurement. Normally
the measurement should be the maximum scanning distance
of the sensor. An obstacle is detected when the sensor returns
a measurement smaller than the previous and at the same time
smaller than a predefined threshold [9].
When an obstacle is detected the agent passes into the obstacle
avoidance subroutine. First the agent must position itself and
start moving parallel to the obstacle. Then the side sensor
scans the obstacle as the agent moves. If the sensor detects an
opening that is large enough for the agent, the agent turns and
moves through the opening. Finally the agent returns to its
previous state and continues towards its original destination.
During the obstacle avoidance subroutine the front sensor
continues to operate in case there is another obstacle in front
of the agent. In such cases (for instance a wall corner), the
agent turns at the opposite direction and continues the same
subroutine.
We must point out that the same timeout limit that exists for
the agents’ motion applies to the obstacle avoidance routine
as well. Thus, if an agent cannot avoid an obstacle within the
specified time frame, the obstacle avoidance routine stops and
the agent returns to the execution of the next step of the main
algorithm.

V. SIMULATION AND RESULTS

Having established the fundamentals of the PSO Algorithm,
the Robotic Swarm and the Communication Network, we
examined the ”proof of concept” of the system by developing a
simulation tool. The tool simulates the behavior of the swarm
in an indoor environment assigned to the task of locating a
radio antenna.
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Fig. 2: Simulation in indoor environment with 5 agents. The
source is located at the upper right corner of the space making
the localization even more difficult. Pictures (a) to (f) depict
a 5 step-at-a-time progression. Some agents fail to reach the
source within the 30 step limit (picture f).

The purpose of the simulation was to evaluate the effectiveness
of the basic PSO algorithm (along with some alterations which
are presented later on) along with any constrains imposed
by the indoor environment, the network communication and
the robotic motion. At this point we overlook the issues
concerning the field measurement (i.e. the sensing) -assuming
that every agent is able to collect a field measurement at any
time. One final concession has been made concerning the issue
of localization, where we assume that the agents use a global
coordinate system and are able to know their absolute position
at any time.
The main algorithm that the agents follow during the simu-
lation is the PSO Type 1’ although there are some changes
in our implementation. First, we have inserted a time frame
within which, a step of the algorithm is executed. The duration
of the time frame is associated with the speed of the actual
robots and the dimensions of the environment. It is calculated
as the time needed for a robot to traverse through 1/6th

of the operating space. This distance is considered to be
the length of a typical large-scale obstacle (e.g. a wall) that
the agent needs to overcome within the time frame. Another



Fig. 3: PSO Algorithm Flowchart

modification deals with the obstacle avoidance subroutine (as
described in a previous section). While moving during the
execution of the main algorithm, an agent may encounter an
obstacle that it must surpass. When such an event occurs the
main algorithm is interrupted and the agent enters the obstacle
avoidance subroutine. When the current time frame ends the
agent returns to its previous state, whether it has surpassed the
obstacle or not.
Another tweak is about the data exchanged. Instead of the
agents transmitting their best measurements according to the
PSO algorithm, they transmit their local copy of the best
swarm value measured. This results in best values propa-
gating to agents that cannot communicate directly with each
other, thus counter-balancing the degradation of the system’s
efficiency due to communication failures. Fig. 3 depicts the
modified PSO algorithm flowchart.
Finally the simulation provides a realistic propagation model

of the electromagnetic waves transmitted by the antenna. For
this purpose we use a set of alternative indoor propaga-
tion models. In particular we use the COST-231 Multi Wall
Model [10], the Keenan-Motley Model [11], the Single Slope
Indoor Model [10] and the Linear Attenuation Model [10].
Based on this simulation tool, we performed a series of trials
using the following set of parameters which correspond to real-
life scenarios. The simulated environment was a 12 by 12 me-
ters room, with an antenna source transmitting with 1W power
at 2.4GHz and the COST 231 Multi-Wall Model with thin
concrete (interior) walls for both the agents’ signal propagation
simulation and the source cost function. The swarm comprised
of five agents, which is a fairly small number compared to
typical swarm sizes of the PSO algorithm mathematical model.
Standard PSO parameters values of κ and φmax (0.5 and 4.1
respectively) [7] were used. The agents broadcasted at 1.0 mW
with a sensing sensitivity of -94dBm [12]. The results from

the simulation were very satisfactory. In most cases, where
the source was located in easy-to-reach places (e.g. Fig. 1)
the agents experienced no problems in reaching the source
and, most of the time, in less than 20 steps of the algorithm.
In more challenging scenarios where the source was in a hard-
to-reach places, the agents experienced certain difficulties.
Specifically in Figure 2, where the source is located near the
back wall and also behind a vertical wall, some agents could
not converge towards the source within the maximum step
limit. However, in such challenging scenarios, since at least
some of the agents gathered to the source (within a range of
0.5m), we consider the execution successful.

VI. CONCLUSION

In this paper we have presented an efficient method for
locating and reaching a source in a realistic environment by
an unsupervised wireless robotic network. This method can be
applied to various scenarios containing hostile or unreachable
environments to humans. Such scenarios include locating
radioactive sources, enemy communication infrastructures on
the battlefield and even locating valuable resources on an
extraterrestrial environment.
Our work has focused on simulating a basic configuration
of a wireless robot network searching in a typical environ-
ment. Future work includes scaling up the search space, fine
tuning the searching algorithm, implementing smart routing
protocols (allowing for communication between agents that
are not within range of each other), embodying into the
simulation tool more real life constrains (such as the proposed
distributed global positioning system) and implementing the
robotic swarm.
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