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Abstract. Designing tools that support group formation is a challenging goal for both the 
areas of adaptive and collaborative e-learning environments. Group formation may be used 
for a variety of purposes such as for grouping students that could potentially benefit from 
cooperation based on their individual characteristics or needs, for mediating peer help by 
matching peer learners, for facilitating instructors proposing an initial grouping approach. In 
this paper, we discuss several factors that need to be considered when assigning learners to 
groups. We also investigate the use of the c-means family clustering algorithms and uniform 
distribution, for group formation. The fuzzy c-means is compared to (a) the k-means 
algorithm for homogenously grouping students, and (b) a random selection algorithm (based 
on the uniform distribution) for formulating heterogeneous groups. Preliminary results from 
grouping 36 students based on 2 and 3 criteria, indicate the potential of the fuzzy c-means 
algorithm for homogenously grouping students, and the random selection algorithm as a low 
complexity approach for achieving a significant level of heterogeneity.  

1   Introduction 

Research on peer influences on learning suggests that students who form a group create a setting 
that facilitates or impedes learning above and beyond what would be expected. This denotes that 
how to form an effective group may have an impact to the educational benefit of group interaction. 
Support for group formation may be based on learner profile information [11], [7], [10] such as 
ability, prior knowledge, learning style, browsing behaviour, or learner context [8] such as 
location, time, and availability. Group formation may be used for a variety of purposes in different 
contexts such as (i) in a Computer-Supported Collaborative Learning (CSCL) context for grouping 
students that could potentially benefit from cooperation based on their complementarity of 
knowledge/skills or competitiveness, or for forming groups around problems with specific 
requirements [5], (ii) in a web-based learning environment for mediating peer help by matching 
peer learners based on their individual characteristics and/or learning needs on a particular 
subject/task [4], (iii) in a classroom-based context to facilitate instructors in formulating effective 
learning groups proposing an initial grouping approach [6]. Critical open issues in the area remain 
(a) the criteria based on which learners that should maximally benefit from each other when 
working together are grouped, and (b) the computational issues arising in the implementation of 
group formation support.  

In this study we discuss different factors that need to be considered when assigning learners to 
groups and focus on the computational problem of selecting appropriate to effectively operate on 
small data sets algorithms for formulating groups. In particular, in Section 2 we suggest specific 
factors influencing the group formation process, present a brief literature review on algorithms 
used in group formation and introduce the c-means family algorithms. In Section 3 we compare 
the k-means to the fuzzy c-means algorithm for group formation purposes. Moreover, a random 
algorithm based on the uniform distribution is proposed as an alternative approach for generating 
heterogeneous groups. Preliminary results provide evidence for the effectiveness of the fuzzy c-
means algorithm in formulating homogenous groups and the appropriateness of the uniform 
distribution in heterogeneous groups; however in order to reach a safe conclusion a series of tests 
should be performed in a real context. 



2  Algorithms for Assigning Learners to Groups  

Support for group formation aims to facilitate the process of assigning students to groups and 
increase the possibility that groups will satisfy specific criteria. In particular, specific factors that 
need to be considered when assigning learners to groups concern: 
− the criteria used for effective grouping: the number and type of criteria that the group members 

should satisfy; in an educational context these criteria may reflect specific learning 
characteristics such as ability, prior knowledge, style, competence, or context such as problem 
requirements, learners’ location or availability 

− the level of homogeneity/heterogeneity of the groups may be considered as a group 
characteristic or reflect the status of the group based on specific characteristics of the 
individuals, resulting in: (a)  homogenous/heterogeneous groups such as a group of students 
with complementary knowledge/skills, or (b) groups that are homogenous according to specific 
criteria and heterogeneous based on others such as groups consisting of learners with same 
ability and mixed styles, 

− the size of the groups in terms of the number of members included in each group. 
Different algorithms have been used for formulating homogenous and heterogeneous groups. In 
particular, recent studies propose the use of optimization algorithms as an effective solution for 
assigning groups. Cavanaugh et al. [2] propose the repeated use of the ‘hill climbing’ optimization 
algorithm with weighted criteria defined by the instructor, for assigning homogeneous and 
heterogeneous groups in a web-based environment. Bekele focuses on heterogeneity proposing a 
mathematical approach which uses the Ant Colony Optimization algorithm for maximizing group 
heterogeneity [3]. However, the crucial parameter of low complexity remains an open issue.  

In this study we focus on less complex and more time-saving approaches yet sufficiently 
effective algorithms such as clustering algorithms for homogeneous grouping and a simple random 
algorithm for heterogeneous grouping. Clustering algorithms are a category of optimization 
algorithms designed to discover groups in data. They try to minimize an objective function which 
is derived from (dis-)similarity measures (usually distance) between the data. The c-means 
algorithms belong to the partitional clustering algorithms as they try to form clusters by dividing 
the data. They present a series of advantages compared to other clustering and even most 
optimization algorithms. First of all they take as input the desired number of clusters to be found, 
which is a drawback for real-life data mining, but essential to our application. Moreover, they are 
easy to implement in scripting languages (PHP, JavaScript). Finally one of the main reasons for 
their popularity (especially for k-means) is the fact that they converge extremely quickly. Their 
computational complexity is Ω(n) where n is the number of data points. However, the use of 
clustering algorithms for group formation presents also several disadvantages: (a) they form only 
homogeneous groups: clustering algorithms are used for grouping similar data, so it is not possible 
for them to create clusters that maximize the dissimilarity measure, (b) inability to evenly 
distribute the data points along the clusters: they take as input the desired number of 
clusters/groups to be found whilst they are not interested in the number of group members, and (c) 
limited advantages in comparison to simple sorting algorithms when used with one criterion. 

In this research, we compare two clustering algorithms of the c-means family, the k-means and 
fuzzy c-means algorithms, in grouping students based on specific criteria. Both algorithms have 
been extendedly used in application areas such as image processing or data mining in large sets of 
data. In group formation where data sets are usually small, the performance of both algorithms 
needs to be re-examined. k-means was proposed by McQueen in 1967 and since then it has 
become one of the most commonly used clustering algorithms. It is also referred Hard C-Means 
(HCM) in comparison to the Fuzzy C-Means (FCM) algorithm. The simplicity and the speed of 
HCM are obvious since it is based on the Euclidian distance that can be estimated by a series of 
multiplications. However its main drawback is the inability to evenly distribute the data points 
along the clusters. Interchanging members between neighbor clusters can face this problem, but 
the complexity of the process is greater than that of the main algorithm. Fuzzy c-means algorithm 
also known as Fuzzy ISODATA was proposed by James Bezdek in 1973 and is basically an 
extension of the k-means algorithm to fuzzy sets [1]. Although FCM is more complex than k-
means it is still reported to have linear complexity (Ω(n)) making it as fast as k-means. Besides 
being fast, FCM seems to perform better than k-means when they were both evaluated with 
standard data mining quality measures [9]. The main advantage of FCM for group formation 



derives from the membership function. In FCM a data point may belong to more than one cluster 
with a different probability. This feature, allows us to address the problem of inequality of the 
clusters in a more effective way, as we can exchange data points between clusters based on their 
membership probabilities. This information could be also provided to the expert-teacher as a 
useful aid to support final decisions on grouping students.  

3   Formation of Homogenous & Heterogeneous Groups 

Group homogeneity: Comparing FCM with HCM. FCM and HCM have been tested in forming 
homogenous groups with a set of 36 students based on 2 and 3 criteria that assess students’ style in 
2 or 3 different style categories respectively. In our case, homogenous groups consist of students 
with similar characteristics. The algorithms used were the standard MATLAB’s implementations.  

FCM and HCM were compared based on their effectiveness, which was evaluated according to 
specific cluster validity measures. We decided to use such general measures since there is no 
advanced validity measure that apply to both fuzzy and non-fuzzy algorithms. A commonly used 
measure is Squared Sum Error (SSE) (see equation 3). Since SSE describes the coherence of a 
given cluster, we expect that “better” clusters give lower SSE values. 
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In Table 1 we can see that in most cases the FCM algorithm gives lower SSE values than the 
HCM producing more coherent or homogeneous clusters/groups. For example, in rows 1 and 4, 
the value of the SSQ for the FCM is 68.1037 and 58.4633 and for the HCM 98.2000 and 78.3333 
accordingly. Only in the 2nd row the HCM appears slightly better. Lastly, in three different 
groupings (rows 3, 5 and 6), the HCM could not respond to the input conditions. 

Table 1.  SSE values of FCM and HCM in varying number of groups and criteria. 

Number of groups Number of criteria SSE of FCM SSE of HCM  
6 2 68.1037 98.2000 
6 3 93.9199 88.4179 
9 2 75.2139 not responding 
9 3 58.4633 78.3333 
12 2 77.1776 not responding 
12 3 52.3504 not responding 

One major advantage of FCM, which emerged from our tests, is its ability to work in spaces that 
contain a limited amount of data (i.e. students in class ~20-100) and with small groups (the 
number of students per group decreases when the number of groups increases), whereas HCM 
seems to be unstable under these conditions. In our data space that contains 36 students, HCM 
performed well in 9 groups (4 students per group) when used with 3 criteria, but it was unable to 
produce clusters with 2 criteria (see in Table 1 – rows 4 and 3 respectively). Moreover if we 
downsize even more the number of students per group (in cases where the algorithms should 
generate 12 groups), the standard implementation of HCM stops responding. Based on these 
results, and taking into account that usually group formation apply to small data sets whilst groups 
consist of a few members, we conclude that the classic HCM seems not to be a viable solution. 

Group Heterogeneity: the standard random algorithm. Heterogeneity in group formation is a 
relatively vague term. For example in [3] heterogeneity refers to mixed ability groups and as the 
authors suggest “a reasonably heterogeneous group refers to a group where student-scores reveal a 
combination of low, average and high student-scores”. Thus, a heterogeneous group might be 
defined as a group in which all the different values of the data space can be found. However in 
cases where more than one criterion is used, with a range of values for each one, then it becomes 
even harder to define group heterogeneity. In general, when defining the dissimilarity measure 
then it is a typical optimization problem to maximize its value. Another interesting approach to 
investigate, due to its low complexity, is to form heterogeneous groups by applying a uniform 
distribution on the data space. To this end a random algorithm may be used in order to achieve 
some level of heterogeneity. Especially in cases where the level of group heterogeneity needs not 
to be the maximum possible, the random algorithm could be effectively used. Moreover, compared 



to most optimization algorithms, the standard random algorithm is by far faster, making it even 
more appealing as a choice. For validation purposes, we used MATLAB’s implementation of 
random selection which follows the uniform distribution without replacement. We also use the 
cluster dispersion as a measure of heterogeneity in order to validate this approach. Cluster 
dispersion is defined as the cluster’s diameter which is the maximum distance of any two data 
points belonging to the same cluster. In particular, we compare the maximum and mean diameters 
of all the clusters created by the random algorithm and FCM. The results are presented in Table 3, 
where in every grouping (each one corresponds to a different row), the maximum diameter of the 
clusters generated by the uniform distribution appears significantly greater than that of clusters 
generated by the FCM, and close enough to the maximum ones (≈7 for the squared space - 2 
criteria - and ≈8.6 for the cubed space - 3 criteria).  

Table 2. Cluster dispersion generated by FCM and uniform distribution algorithms. 

Number of groups  Number of criteria FCM Uniform distribution 
  Max. Diam. Mean Diam. Max. Diam. Mean Diam. 

6 2 2.2361 1.5107 5 4.0271 
6 3 2.4495 2.1748 6 4.5008 
9 2 1.4142 0.8047 5 3.5068 
9 3 3.3166 1.9170 5.8310 3.9531 

5  Conclusions and Further Research 

In this study we investigated the potential of the k-means and fuzzy c-means algorithms for 
assigning homogenous groups of students and the random selection algorithm for heterogeneous 
groups. Preliminary experiments in a simulated environment indicate the appropriateness of the 
fuzzy c-means and uniform distribution algorithm for assigning groups. Especially, the output of 
the FCM algorithm may also be used to support instructors in group formation or students in 
identifying appropriate peers, by providing valuable information about the different groups that a 
student might better fit based on specific criteria.  
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